There are infinitely many Carmichael numbers WR Alford, A Granville, C Pomerance Annals of Mathematics, 703-722, 1994 | 617 | 1994 |
Arithmetic properties of binomial coefficients, I: Binomial coefficients modulo prime powers A Granville Organic mathematics, Proceedings of the workshop, Simon Fraser University …, 1997 | 318 | 1997 |
On the Equations zm = F(x, y) and Axp + Byq = Czr H Darmon, A Granville Bulletin of the London Mathematical Society 27 (6), 513-543, 1995 | 271 | 1995 |
Smooth numbers: computational number theory and beyond A Granville Algorithmic number theory: lattices, number fields, curves and cryptography …, 2008 | 187 | 2008 |
Defect zero blocks for finite simple groups A Granville, K Ono Transactions of the American Mathematical Society 348 (1), 331-347, 1996 | 170 | 1996 |
ABC allows us to count squarefrees A Granville Internat. Math. Res. Notices, 1998 | 154 | 1998 |
A decomposition of Riemann's zeta-function A Granville London Mathematical Society Lecture Note Series, 95-102, 1997 | 150 | 1997 |
The distribution of values of L (1, chi_d) A Granville, K Soundararajan arXiv preprint math/0206031, 2002 | 138 | 2002 |
Harald Cramér and the distribution of prime numbers A Granville Scandinavian Actuarial Journal 1995 (1), 12-28, 1995 | 138 | 1995 |
Large character sums: pretentious characters and the Pólya-Vinogradov theorem A Granville, K Soundararajan Journal of the American Mathematical Society 20 (2), 357-384, 2007 | 128 | 2007 |
Large character sums: pretentious characters and the Pólya-Vinogradov theorem A Granville, K Soundararajan Journal of the American Mathematical Society 20 (2), 357-384, 2007 | 128 | 2007 |
Prime number races A Granville, G Martin The American Mathematical Monthly 113 (1), 1-33, 2006 | 115 | 2006 |
It’s as easy as abc A Granville, T Tucker Notices of the AMS 49 (10), 1224-1231, 2002 | 114 | 2002 |
It is easy to determine whether a given integer is prime A Granville Bulletin of the American Mathematical Society 42 (1), 3-38, 2005 | 113 | 2005 |
On the normal behavior of the iterates of some arithmetic functions P Erdös, A Granvilie, C Pomerance, C Spiro Analytic number theory, 165-204, 1990 | 100 | 1990 |
Limitations to the equi-distribution of primes I J Friedlander, A Granville Annals of Mathematics, 363-382, 1989 | 87 | 1989 |
Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients A Granville, O Ramaré Mathematika 43 (1), 73-107, 1996 | 75 | 1996 |
Rational torsion of prime order in elliptic curves over number fields S Kamienny, B Mazur, A Granville Astérisque 228, 81-100, 1995 | 71 | 1995 |
Large character sums A Granville, K Soundararajan Journal of the American Mathematical Society 14 (2), 365-397, 2001 | 69 | 2001 |
The first case of Fermat’s last theorem is true for all prime exponents up to 714,591,416,091,389 A Granville, MB Monagan Transactions of the American Mathematical Society 306 (1), 329-359, 1988 | 66 | 1988 |