Three approaches for representing Lindblad dynamics by a matrix-vector notation M Am-Shallem, A Levy, I Schaefer, R Kosloff arXiv preprint arXiv:1510.08634, 2015 | 35 | 2015 |

Semi-global approach for propagation of the time-dependent Schrödinger equation for time-dependent and nonlinear problems I Schaefer, H Tal-Ezer, R Kosloff Journal of Computational Physics 343, 368-413, 2017 | 32 | 2017 |

New, highly accurate propagator for the linear and nonlinear Schrödinger equation H Tal-Ezer, R Kosloff, I Schaefer Journal of Scientific Computing 53 (1), 211-221, 2012 | 23 | 2012 |

Optimal-control theory of harmonic generation I Schaefer, R Kosloff Physical Review A—Atomic, Molecular, and Optical Physics 86 (6), 063417, 2012 | 18 | 2012 |

Optimization of high-order harmonic generation by optimal control theory: Ascending a functional landscape in extreme conditions I Schaefer, R Kosloff Physical Review A 101 (2), 023407, 2020 | 9 | 2020 |

Three approaches for representing Lindblad dynamics by a matrix-vector notation. 2015 M Am-Shallem, A Levy, I Schaefer, R Kosloff arXiv preprint arXiv:1510.08634, 0 | 6 | |

Coherent manipulation of nuclear spins in the strong driving regime D Yudilevich, A Salhov, I Schaefer, K Herb, A Retzker, A Finkler New Journal of Physics, 2023 | 2 | 2023 |

Quantum optimal control theory of harmonic generation I Schaefer arXiv preprint arXiv:1202.6520, 2012 | 2 | 2012 |

Coherent manipulation of nuclear spins in the strong driving regime A Finkler, D Yudilevich, A Salhov, I Schaefer, K Herb, A Retzker Bulletin of the American Physical Society, 2024 | | 2024 |

Corrigendum to “Semi-global approach for propagation of the time-dependent Schrödinger equation for time-dependent and nonlinear problems” I Schaefer, H Tal-Ezer, R Kosloff Journal of Computational Physics, 2022 | | 2022 |

דינמיקה של סוליטונים בסריג לא-לינארי חד-מימדי (Soliton dynamics in one-dimensional nonlinear lattice) I Schaefer Hebrew University of Jerusalem, 2009 | | 2009 |

Quantum Optimal Control Theory of High Harmonic Generation I Schaefer | | |