Analysis of the navier–stokes–nernst–planck–poisson system M Schmuck Mathematical Models and Methods in Applied Sciences 19 (06), 993-1014, 2009 | 97 | 2009 |

Homogenization of the Poisson--Nernst--Planck equations for ion transport in charged porous media M Schmuck, MZ Bazant SIAM Journal on Applied Mathematics 75 (3), 1369-1401, 2015 | 84 | 2015 |

Convergent discretizations for the Nernst–Planck–Poisson system A Prohl, M Schmuck Numerische Mathematik 111 (4), 591-630, 2009 | 49 | 2009 |

Modeling and deriving porous media Stokes-Poisson-Nernst-Planck equations by a multi-scale approach M Schmuck Communications in Mathematical Sciences 9 (3), 685-710, 2011 | 46 | 2011 |

First error bounds for the porous media approximation of the Poisson‐Nernst‐Planck equations M Schmuck ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte …, 2012 | 31 | 2012 |

Convergent finite element discretizations of the Navier-Stokes-Nernst-Planck-Poisson system A Prohl, M Schmuck ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation …, 2010 | 31 | 2010 |

Upscaled phase-field models for interfacial dynamics in strongly heterogeneous domains M Schmuck, M Pradas, GA Pavliotis, S Kalliadasis Proceedings of the Royal Society A: Mathematical, Physical and Engineering …, 2012 | 30 | 2012 |

Derivation of effective macroscopic Stokes–Cahn–Hilliard equations for periodic immiscible flows in porous media M Schmuck, M Pradas, GA Pavliotis, S Kalliadasis Nonlinearity 26 (12), 3259, 2013 | 27 | 2013 |

New stochastic mode reduction strategy for dissipative systems M Schmuck, M Pradas, S Kalliadasis, GA Pavliotis Physical review letters 110 (24), 244101, 2013 | 17 | 2013 |

New porous medium Poisson-Nernst-Planck equations for strongly oscillating electric potentials M Schmuck Journal of Mathematical Physics 54 (2), 021504, 2013 | 16 | 2013 |

Homogenization of a catalyst layer model for periodically distributed pore geometries in PEM fuel cells M Schmuck, P Berg Applied Mathematics Research eXpress 2013 (1), 57-78, 2013 | 16 | 2013 |

Effective macroscopic interfacial transport equations in strongly heterogeneous environments for general homogeneous free energies M Schmuck, GA Pavliotis, S Kalliadasis Applied Mathematics Letters 35, 12-17, 2014 | 14 | 2014 |

Modeling, analysis, and numerics in electrohydrodynamics M Schmuck | 14 | 2008 |

A new mode reduction strategy for the generalized Kuramoto–Sivashinsky equation M Schmuck, M Pradas, GA Pavliotis, S Kalliadasis IMA Journal of Applied Mathematics 80 (2), 273-301, 2015 | 10 | 2015 |

Effective macroscopic equations for species transport and reactions in porous catalyst layers M Schmuck, P Berg Journal of The Electrochemical Society 161 (8), E3323, 2014 | 9 | 2014 |

A new upscaled Poisson-Nernst-Planck system for strongly oscillating potentials M Schmuck Preprint, 2012 | 5 | 2012 |

Upscaling of solid-electrolyte composite intercalation cathodes for energy storage systems M Schmuck Applied Mathematics Research eXpress 2017 (2), 402-430, 2017 | 4 | 2017 |

Rate of convergence of general phase field equations in strongly heterogeneous media toward their homogenized limit M Schmuck, S Kalliadasis SIAM Journal on Applied Mathematics 77 (4), 1471-1492, 2017 | 4 | 2017 |

Recent advances in the evolution of interfaces: thermodynamics, upscaling, and universality M Schmuck, GA Pavliotis, S Kalliadasis Computational Materials Science 156, 441-451, 2019 | 2 | 2019 |

Computational investigation of porous media phase field formulations: Microscopic, effective macroscopic, and Langevin equations A Ververis, M Schmuck Journal of Computational Physics 344, 485-498, 2017 | 2 | 2017 |