Markus Schmuck
Markus Schmuck
Complex Heterogeneous Multiphase Systems Group, Heriot-Watt University
Verified email at - Homepage
Cited by
Cited by
Analysis of the navier–stokes–nernst–planck–poisson system
M Schmuck
Mathematical Models and Methods in Applied Sciences 19 (06), 993-1014, 2009
Homogenization of the Poisson--Nernst--Planck equations for ion transport in charged porous media
M Schmuck, MZ Bazant
SIAM Journal on Applied Mathematics 75 (3), 1369-1401, 2015
Convergent discretizations for the Nernst–Planck–Poisson system
A Prohl, M Schmuck
Numerische Mathematik 111 (4), 591-630, 2009
Modeling and deriving porous media Stokes-Poisson-Nernst-Planck equations by a multi-scale approach
M Schmuck
Communications in Mathematical Sciences 9 (3), 685-710, 2011
First error bounds for the porous media approximation of the Poisson‐Nernst‐Planck equations
M Schmuck
ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte …, 2012
Convergent finite element discretizations of the Navier-Stokes-Nernst-Planck-Poisson system
A Prohl, M Schmuck
ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation …, 2010
Upscaled phase-field models for interfacial dynamics in strongly heterogeneous domains
M Schmuck, M Pradas, GA Pavliotis, S Kalliadasis
Proceedings of the Royal Society A: Mathematical, Physical and Engineering …, 2012
Derivation of effective macroscopic Stokes–Cahn–Hilliard equations for periodic immiscible flows in porous media
M Schmuck, M Pradas, GA Pavliotis, S Kalliadasis
Nonlinearity 26 (12), 3259, 2013
New stochastic mode reduction strategy for dissipative systems
M Schmuck, M Pradas, S Kalliadasis, GA Pavliotis
Physical review letters 110 (24), 244101, 2013
New porous medium Poisson-Nernst-Planck equations for strongly oscillating electric potentials
M Schmuck
Journal of Mathematical Physics 54 (2), 021504, 2013
Homogenization of a catalyst layer model for periodically distributed pore geometries in PEM fuel cells
M Schmuck, P Berg
Applied Mathematics Research eXpress 2013 (1), 57-78, 2013
Effective macroscopic interfacial transport equations in strongly heterogeneous environments for general homogeneous free energies
M Schmuck, GA Pavliotis, S Kalliadasis
Applied Mathematics Letters 35, 12-17, 2014
Modeling, analysis, and numerics in electrohydrodynamics
M Schmuck
A new mode reduction strategy for the generalized Kuramoto–Sivashinsky equation
M Schmuck, M Pradas, GA Pavliotis, S Kalliadasis
IMA Journal of Applied Mathematics 80 (2), 273-301, 2015
Effective macroscopic equations for species transport and reactions in porous catalyst layers
M Schmuck, P Berg
Journal of The Electrochemical Society 161 (8), E3323, 2014
A new upscaled Poisson-Nernst-Planck system for strongly oscillating potentials
M Schmuck
Preprint, 2012
Upscaling of solid-electrolyte composite intercalation cathodes for energy storage systems
M Schmuck
Applied Mathematics Research eXpress 2017 (2), 402-430, 2017
Rate of convergence of general phase field equations in strongly heterogeneous media toward their homogenized limit
M Schmuck, S Kalliadasis
SIAM Journal on Applied Mathematics 77 (4), 1471-1492, 2017
Recent advances in the evolution of interfaces: thermodynamics, upscaling, and universality
M Schmuck, GA Pavliotis, S Kalliadasis
Computational Materials Science 156, 441-451, 2019
Computational investigation of porous media phase field formulations: Microscopic, effective macroscopic, and Langevin equations
A Ververis, M Schmuck
Journal of Computational Physics 344, 485-498, 2017
The system can't perform the operation now. Try again later.
Articles 1–20