Bayesian structured additive distributional regression with an application to regional income inequality in Germany N Klein, T Kneib, S Lang, A Sohn | 164 | 2015 |
Six years ahead: a longitudinal analysis regarding course and predictive value of the Strengths and Difficulties Questionnaire (SDQ) in children and adolescents A Becker, A Rothenberger, A Sohn, BELLA Study Group European child & adolescent psychiatry 24, 715-725, 2015 | 102 | 2015 |
Rage against the mean–a review of distributional regression approaches T Kneib, A Silbersdorff, B Säfken Econometrics and Statistics 26, 99-123, 2023 | 97 | 2023 |
Nonparametric inference in hidden Markov models using P‐splines R Langrock, T Kneib, A Sohn, SL DeRuiter Biometrics 71 (2), 520-528, 2015 | 70 | 2015 |
Stock price predictions with LSTM neural networks and twitter sentiment ML Thormann, J Farchmin, C Weisser, RM Kruse, B Säfken, A Silbersdorff Statistics, Optimization & Information Computing 9 (2), 268-287, 2021 | 43 | 2021 |
Reconsidering the income‐health relationship using distributional regression A Silbersdorff, J Lynch, S Klasen, T Kneib Health economics 27 (7), 1074-1088, 2018 | 26 | 2018 |
Firm-level energy rebound effects and relative efficiency in the German manufacturing sector A Berner, S Lange, A Silbersdorff Energy Economics 109, 105903, 2022 | 25 | 2022 |
Introductory data science across disciplines, using Python, case studies, and industry consulting projects J Lasser, D Manik, A Silbersdorff, B Säfken, T Kneib Teaching Statistics 43, S190-S200, 2021 | 24 | 2021 |
A Markov-switching generalized additive model for compound Poisson processes, with applications to operational loss models J Hambuckers, T Kneib, R Langrock, A Silbersdorff Quantitative Finance 18 (10), 1679-1698, 2018 | 21 | 2018 |
Semiparametric stochastic volatility modelling using penalized splines R Langrock, T Michelot, A Sohn, T Kneib Computational Statistics 30, 517-537, 2015 | 14 | 2015 |
Economy-Wide Rebound Effects: State of the art, a new taxonomy, policy and research gaps S Lange, M Banning, A Berner, F Kern, C Lutz, J Peuckert, T Santarius, ... ReCap. Berlin (Arbeitsbericht 1), 2019 | 12 | 2019 |
Distributional regression techniques in socioeconomic research on the inequality of health with an application on the relationship between mental health and income A Silbersdorff, KS Schneider International Journal of Environmental Research and Public Health 16 (20), 4009, 2019 | 10 | 2019 |
A semiparametric analysis of conditional income distributions A Sohn, N Klein, T Kneib Journal of Contextual Economics–Schmollers Jahrbuch, 13-22, 2015 | 10 | 2015 |
Rage against the mean–a review of distributional regression approaches, Econometrics and Statistics, 26, 99–123 T Kneib, A Silbersdorff, B Säfken | 6 | 2023 |
Model averaging for linear mixed models via augmented Lagrangian RM Kruse, A Silbersdorff, B Säfken Computational Statistics & Data Analysis 167, 107351, 2022 | 5 | 2022 |
A new semiparametric approach to analysing conditional income distributions A Sohn, N Klein, T Kneib SOEPpapers on Multidisciplinary Panel Data Research, 2014 | 5 | 2014 |
Identifying topical shifts in twitter streams: an integration of non-negative matrix factorisation, sentiment analysis and structural break models for large scale data M Luber, C Weisser, B Säfken, A Silbersdorff, T Kneib, K Kis-Katos Multidisciplinary International Symposium on Disinformation in Open Online …, 2021 | 4 | 2021 |
Rage against the mean: a review of distributional regression approaches. Econom Stat T Kneib, A Silbersdorff, B Säfken | 4 | 2021 |
Analysing Inequalities in Germany: A Structured Additive Distributional Regression Approach A Silbersdorff Springer, 2017 | 4 | 2017 |
Erwartete Schulprobleme als Folge der Corona-Schulschließungen im Frühjahr 2020–Empirische Evidenz zur Bedeutung familialer Ressourcen mittels nichtlinearer Modellierung J Lorenz, S Ike, LM Dammann, D Becker, B Säfken, A Silbersdorff Zeitschrift für Erziehungswissenschaft 26 (2), 403-441, 2023 | 3 | 2023 |