Using additive noise in back-propagation training L Holmstrom, P Koistinen IEEE transactions on neural networks 3 (1), 24-38, 1992 | 423 | 1992 |
A quantitative Holocene climatic record from diatoms in northern Fennoscandia A Korhola, J Weckström, L Holmström, P Erästö Quaternary research 54 (2), 284-294, 2000 | 232 | 2000 |
Neural and statistical classifiers-taxonomy and two case studies L Holmstrom, P Koistinen, J Laaksonen, E Oja Neural Networks, IEEE Transactions on 8 (1), 5-17, 1997 | 179 | 1997 |
A statistical analysis of multiple temperature proxies: Are reconstructions of surface temperatures over the last 1000 years reliable? BB McShane, AJ Wyner The Annals of Applied Statistics, 5-44, 2011 | 110 | 2011 |
Temperature patterns over the past eight centuries in Northern Fennoscandia inferred from sedimentary diatoms J Weckström, A Korhola, P Erästö, L Holmström Quaternary Research 66 (1), 78-86, 2006 | 80 | 2006 |
Bayesian multiscale smoothing for making inferences about features in scatterplots P Erästö, L Holmström Journal of Computational and Graphical Statistics 14 (3), 569-589, 2005 | 67 | 2005 |
A new multivariate technique for top quark search L Holmström, SR Sain, HE Miettinen Computer physics communications 88 (2-3), 195-210, 1995 | 67 | 1995 |
Kernel regression and backpropagation training with noise P Koistinen, L Holmstrom Neural Networks, 1991. 1991 IEEE International Joint Conference on, 367-372 …, 1991 | 63 | 1991 |
Piecewise quadric blending of implicitly defined surfaces L Holmström Computer Aided Geometric Design 4 (3), 171-189, 1987 | 47 | 1987 |
Asymptotic bounds for the expected L1 error of a multivariate kernel density estimator L Holmstrom, J Klemela Journal of multivariate analysis 42 (2), 245-266, 1992 | 38 | 1992 |
Comparing different calibration methods (WA/WA-PLS regression and Bayesian modelling) and different-sized calibration sets in pollen-based quantitative climate reconstruction JS Salonen, L Ilvonen, H Seppä, L Holmström, RJ Telford, ... The Holocene 22 (4), 413-424, 2012 | 36 | 2012 |
The self-organizing reduced kernel density estimator L Holmstrom, A Hamalainen Neural Networks, 1993., IEEE International Conference on, 417-421 vol. 1, 1993 | 36 | 1993 |
Process error detection using self-organizing feature maps JT Alander, M Frisk, L Holmström, A Hämäläinen, J Tuominen Artificial Neural Networks, 1229-1232, 1991 | 29 | 1991 |
Scale space multiresolution analysis of random signals L Holmström, L Pasanen, R Furrer, SR Sain Computational Statistics & Data Analysis 55 (10), 2840-2855, 2011 | 27 | 2011 |
The accuracy and the computational complexity of a multivariate binned kernel density estimator L Holmström Journal of Multivariate Analysis 72 (2), 264-309, 2000 | 26 | 2000 |
Bayesian analysis of features in a scatter plot with dependent observations and errors in predictors P Erästö, L Holmström Journal of Statistical Computation and Simulation 77 (5), 421-431, 2007 | 25 | 2007 |
A semiparametric density estimation approach to pattern classification F Hoti, L Holmström Pattern Recognition 37 (3), 409-419, 2004 | 25 | 2004 |
Comparison of neural and statistical classifiers--theory and practice L Holmström, P Koistinen, J Laaksonen, E Oja Research Reports A13, Rolf Nevanlinna Institute, 1996 | 24 | 1996 |
Family-based clusters of cognitive test performance in familial schizophrenia F Hoti, A Tuulio-Henriksson, J Haukka, T Partonen, L Holmström, ... BMC psychiatry 4 (1), 1-13, 2004 | 23 | 2004 |
The course of positional cranial deformation from 3 to 12 months of age and associated risk factors: a follow-up with 3D imaging H Aarnivala, V Vuollo, V Harila, T Heikkinen, P Pirttiniemi, L Holmström, ... European journal of pediatrics 175 (12), 1893-1903, 2016 | 22 | 2016 |