Learning to remember: A synaptic plasticity driven framework for continual learning O Ostapenko, M Puscas, T Klein, P Jahnichen, M Nabi Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2019 | 320 | 2019 |
Unsupervised adversarial depth estimation using cycled generative networks A Pilzer, D Xu, M Puscas, E Ricci, N Sebe 2018 international conference on 3D vision (3DV), 587-595, 2018 | 205 | 2018 |
Multimodal prototypical networks for few-shot learning F Pahde, M Puscas, T Klein, M Nabi Proceedings of the IEEE/CVF winter conference on applications of computer …, 2021 | 93 | 2021 |
Unsupervised tube extraction using transductive learning and dense trajectories MM Puscas, E Sangineto, D Culibrk, N Sebe Proceedings of the IEEE international conference on computer vision, 1653-1661, 2015 | 39 | 2015 |
Progressive fusion for unsupervised binocular depth estimation using cycled networks A Pilzer, S Lathuilière, D Xu, MM Puscas, E Ricci, N Sebe IEEE transactions on pattern analysis and machine intelligence 42 (10), 2380 …, 2019 | 28 | 2019 |
Structured coupled generative adversarial networks for unsupervised monocular depth estimation MM Puscas, D Xu, A Pilzer, N Sebe 2019 International Conference on 3D Vision (3DV), 18-26, 2019 | 23 | 2019 |
Joint graph learning and video segmentation via multiple cues and topology calibration J Song, L Gao, MM Puscas, F Nie, F Shen, N Sebe Proceedings of the 24th ACM international conference on Multimedia, 831-840, 2016 | 23 | 2016 |
Low-shot learning from imaginary 3d model F Pahde, M Puscas, J Wolff, T Klein, N Sebe, M Nabi 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), 978-985, 2019 | 12 | 2019 |
Low-shot learning from imaginary 3D model F Pahde, M Puscas, M Nabi, T Klein US Patent 11,080,560, 2021 | 8 | 2021 |
Self-paced adversarial training for multimodal and 3D model few-shot learning F Pahde, O Ostapenko, T Klein, M Nabi, M Puscas US Patent 10,990,848, 2021 | 4 | 2021 |
Generative adversarial network with dynamic capacity expansion for continual learning M Puscas, M Nabi, T Klein, O Ostapenko US Patent 11,544,532, 2023 | 1 | 2023 |
Learning to remember: Dynamic Generative Memory for Continual Learning O Ostapenko, M Puscas, T Klein, M Nabi | 1 | 2018 |
Learning in Low Data Regimes for Image and Video Understanding MM Puscas Università degli studi di Trento, 2019 | | 2019 |
3DV 2019 Y Dai, Z Zhu, M Ferrera, A Boulch, J Moras, MM Puscas, D Xu, N Sebe, ... | | |
Learning to Remember what to Remember: A Synaptic Plasticity Driven Framework O Ostapenko, M Puscas, T Klein, P Jähnichen, M Nabi | | |