Mastering the game of Go with deep neural networks and tree search D Silver, A Huang, CJ Maddison, A Guez, L Sifre, G Van Den Driessche, ... nature 529 (7587), 484-489, 2016 | 20535 | 2016 |
Mastering the game of go without human knowledge D Silver, J Schrittwieser, K Simonyan, I Antonoglou, A Huang, A Guez, ... nature 550 (7676), 354-359, 2017 | 11668 | 2017 |
A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play D Silver, T Hubert, J Schrittwieser, I Antonoglou, M Lai, A Guez, M Lanctot, ... Science 362 (6419), 1140-1144, 2018 | 4952 | 2018 |
Private traits and attributes are predictable from digital records of human behavior M Kosinski, D Stillwell, T Graepel Proceedings of the national academy of sciences 110 (15), 5802-5805, 2013 | 3998 | 2013 |
Mastering atari, go, chess and shogi by planning with a learned model J Schrittwieser, I Antonoglou, T Hubert, K Simonyan, L Sifre, S Schmitt, ... Nature 588 (7839), 604-609, 2020 | 2634 | 2020 |
Mastering chess and shogi by self-play with a general reinforcement learning algorithm D Silver, T Hubert, J Schrittwieser, I Antonoglou, M Lai, A Guez, M Lanctot, ... arXiv preprint arXiv:1712.01815, 2017 | 2431 | 2017 |
Value-decomposition networks for cooperative multi-agent learning P Sunehag, G Lever, A Gruslys, WM Czarnecki, V Zambaldi, M Jaderberg, ... arXiv preprint arXiv:1706.05296, 2017 | 1940 | 2017 |
Large margin rank boundaries for ordinal regression R Herbrich, T Graepel, K Obermayer | 1477 | 2000 |
TrueSkill™: a Bayesian skill rating system R Herbrich, T Minka, T Graepel Advances in neural information processing systems 19, 2006 | 1112 | 2006 |
Human-level performance in 3D multiplayer games with population-based reinforcement learning M Jaderberg, WM Czarnecki, I Dunning, L Marris, G Lever, AG Castaneda, ... Science 364 (6443), 859-865, 2019 | 1019 | 2019 |
Multi-agent reinforcement learning in sequential social dilemmas JZ Leibo, V Zambaldi, M Lanctot, J Marecki, T Graepel arXiv preprint arXiv:1702.03037, 2017 | 936 | 2017 |
A unified game-theoretic approach to multiagent reinforcement learning M Lanctot, V Zambaldi, A Gruslys, A Lazaridou, K Tuyls, J Pérolat, D Silver, ... Advances in neural information processing systems 30, 2017 | 778 | 2017 |
Web-scale bayesian click-through rate prediction for sponsored search advertising in microsoft's bing search engine T Graepel, JQ Candela, T Borchert, R Herbrich Omnipress 27, 13-20, 2010 | 746 | 2010 |
Personality and patterns of Facebook usage Y Bachrach, M Kosinski, T Graepel, P Kohli, D Stillwell Proceedings of the 4th annual ACM web science conference, 24-32, 2012 | 675 | 2012 |
ML confidential: Machine learning on encrypted data T Graepel, K Lauter, M Naehrig International conference on information security and cryptology, 1-21, 2012 | 656 | 2012 |
Support vector learning for ordinal regression R Herbrich, T Graepel, K Obermayer IET Digital Library, 1999 | 587 | 1999 |
Manifestations of user personality in website choice and behaviour on online social networks M Kosinski, Y Bachrach, P Kohli, D Stillwell, T Graepel Machine learning 95, 357-380, 2014 | 456 | 2014 |
Matchbox: large scale online bayesian recommendations DH Stern, R Herbrich, T Graepel Proceedings of the 18th international conference on World wide web, 111-120, 2009 | 369 | 2009 |
Bayes point machines R Herbrich, T Graepel, C Campbell Journal of Machine Learning Research 1 (Aug), 245-279, 2001 | 340 | 2001 |
The mechanics of n-player differentiable games D Balduzzi, S Racaniere, J Martens, J Foerster, K Tuyls, T Graepel International Conference on Machine Learning, 354-363, 2018 | 329 | 2018 |