Follow
Jiawei Jiang
Title
Cited by
Cited by
Year
Heterogeneity-aware distributed parameter servers
J Jiang, B Cui, C Zhang, L Yu
Proceedings of the 2017 ACM International Conference on Management of Data …, 2017
2252017
Towards demystifying serverless machine learning training
J Jiang, S Gan, Y Liu, F Wang, G Alonso, A Klimovic, A Singla, W Wu, ...
Proceedings of the 2021 International Conference on Management of Data, 857-871, 2021
1252021
Sketchml: Accelerating distributed machine learning with data sketches
J Jiang, F Fu, T Yang, B Cui
Proceedings of the 2018 International Conference on Management of Data, 1269 …, 2018
1232018
VF2Boost: Very Fast Vertical Federated Gradient Boosting for Cross-Enterprise Learning
F Fu, Y Shao, L Yu, J Jiang, H Xue, Y Tao, B Cui
Proceedings of the 2021 International Conference on Management of Data, 563-576, 2021
922021
Angel: a new large-scale machine learning system
J Jiang, L Yu, J Jiang, Y Liu, B Cui
National Science Review 5 (2), 216-236, 2018
882018
Reliable data distillation on graph convolutional network
W Zhang, X Miao, Y Shao, J Jiang, L Chen, O Ruas, B Cui
Proceedings of the 2020 ACM SIGMOD international conference on management of …, 2020
772020
Snapshot boosting: a fast ensemble framework for deep neural networks
W Zhang, J Jiang, Y Shao, B Cui
Science China Information Sciences 63 (1), 112102, 2020
762020
Openbox: A generalized black-box optimization service
Y Li, Y Shen, W Zhang, Y Chen, H Jiang, M Liu, J Jiang, J Gao, W Wu, ...
Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data …, 2021
722021
Don’t waste your bits! squeeze activations and gradients for deep neural networks via tinyscript
F Fu, Y Hu, Y He, J Jiang, Y Shao, C Zhang, B Cui
International Conference on Machine Learning, 3304-3314, 2020
682020
Heterogeneity-aware distributed machine learning training via partial reduce
X Miao, X Nie, Y Shao, Z Yang, J Jiang, L Ma, B Cui
Proceedings of the 2021 International Conference on Management of Data, 2262 …, 2021
482021
Dimboost: Boosting gradient boosting decision tree to higher dimensions
J Jiang, B Cui, C Zhang, F Fu
Proceedings of the 2018 International Conference on Management of Data, 1363 …, 2018
482018
VolcanoML: speeding up end-to-end AutoML via scalable search space decomposition
Y Li, Y Shen, W Zhang, C Zhang, B Cui
The VLDB Journal 32 (2), 389-413, 2023
462023
Efficient automatic CASH via rising bandits
Y Li, J Jiang, J Gao, Y Shao, C Zhang, B Cui
Proceedings of the AAAI Conference on Artificial Intelligence 34 (04), 4763-4771, 2020
462020
Self-supervised trajectory representation learning with temporal regularities and travel semantics
J Jiang, D Pan, H Ren, X Jiang, C Li, J Wang
2023 IEEE 39th international conference on data engineering (ICDE), 843-855, 2023
452023
Lasagne: A multi-layer graph convolutional network framework via node-aware deep architecture
X Miao, W Zhang, Y Shao, B Cui, L Chen, C Zhang, J Jiang
IEEE Transactions on Knowledge and Data Engineering 35 (2), 1721-1733, 2021
372021
An experimental evaluation of large scale GBDT systems
F Fu, J Jiang, Y Shao, B Cui
arXiv preprint arXiv:1907.01882, 2019
342019
Tencentboost: A gradient boosting tree system with parameter server
J Jiang, J Jiang, B Cui, C Zhang
2017 IEEE 33rd International Conference on Data Engineering (ICDE), 281-284, 2017
292017
Bagua: scaling up distributed learning with system relaxations
S Gan, X Lian, R Wang, J Chang, C Liu, H Shi, S Zhang, X Li, T Sun, ...
arXiv preprint arXiv:2107.01499, 2021
272021
Ease. ml: A lifecycle management system for machine learning
L Aguilar Melgar, D Dao, S Gan, NM Gürel, N Hollenstein, J Jiang, ...
Proceedings of the Annual Conference on Innovative Data Systems Research …, 2021
272021
Ps2: Parameter server on spark
Z Zhang, B Cui, Y Shao, L Yu, J Jiang, X Miao
Proceedings of the 2019 International Conference on Management of Data, 376-388, 2019
272019
The system can't perform the operation now. Try again later.
Articles 1–20