Point convolutional neural networks by extension operators M Atzmon, H Maron, Y Lipman ACM Transactions on Graphics (TOG) 37 (4), 2018 | 345 | 2018 |
Multiview neural surface reconstruction by disentangling geometry and appearance L Yariv, Y Kasten, D Moran, M Galun, M Atzmon, R Basri, Y Lipman Advances in Neural Information Processing Systems 33, 2020 | 204 | 2020 |
SAL: Sign agnostic learning of shapes from raw data M Atzmon, Y Lipman Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2020 | 196 | 2020 |
Implicit geometric regularization for learning shapes A Gropp, L Yariv, N Haim, M Atzmon, Y Lipman Proceedings of the 37th International Conference on Machine Learning (ICML) 119, 2020 | 192 | 2020 |
Controlling neural level sets M Atzmon, N Haim, L Yariv, O Israelov, H Maron, Y Lipman Advances in Neural Information Processing Systems 32, 2019 | 56 | 2019 |
SALD: Sign Agnostic Learning with Derivatives M Atzmon, Y Lipman International Conference on Learning Representations (ICLR) 2021, 2020 | 49 | 2020 |
Isometric autoencoders A Gropp, M Atzmon, Y Lipman arXiv preprint arXiv:2006.09289, 2020 | 12* | 2020 |
Frame averaging for invariant and equivariant network design O Puny, M Atzmon, H Ben-Hamu, EJ Smith, I Misra, A Grover, Y Lipman International Conference on Learning Representations (ICLR) 2022, 2021 | 8 | 2021 |
Augmenting implicit neural shape representations with explicit deformation fields M Atzmon, D Novotny, A Vedaldi, Y Lipman arXiv preprint arXiv:2108.08931, 2021 | 6 | 2021 |
Frame Averaging for Equivariant Shape Space Learning M Atzmon, K Nagano, S Fidler, S Khamis, Y Lipman Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2022 | 1 | 2022 |